Simple Linear Regression

~ Case study ~

簡單迴歸分析

簡單迴歸分析(線性迴歸)

simple regression analysis

樣本迴歸線之係數

假設 $y = \hat{\beta}_0 + \hat{\beta}_1 x$ 為樣本迴歸線

$$\hat{\boldsymbol{\beta}}_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{\sum x_{i}y_{i} - n\bar{x}\bar{y}}{\sum x_{i}^{2} - n\bar{x}^{2}} = \frac{S_{xy}}{S_{x}^{2}} \quad \text{if } S_{x} \text{ if } A_{x} \text{ if } A_{y} \text{ if$$

 \rightarrow $\hat{\beta}_0$ · $\hat{\beta}_1$ 滿足常態分配:

$$\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sum x_i^2}{n\sum(x_i-\bar{x})^2} \sigma^2\right); \quad \hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum(x_i-\bar{x})^2}\right) \circ$$

案例1

隨機抽樣5個人,得其身高與體重資料如下所示:

身高(y)	162	170	158	172	166
體重(x)	62	75	50	56	70

請問此身高與體重組合的最佳線性迴歸方程式為何?

案例1解說

先求斜率,根據五組數據,可得:

身高 (y)	162	170	158	172	166	$\bar{y} = 165.6$
體重 (x)	62	75	50	56	70	$\bar{x} = 62.6$
$x_i y_i$	10044	12750	7900	9632	11620	Sum= 51946
x_i^2	3844	5625	2500	3136	4900	Sum= 20005

$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{51946 - 5 \times 62.6 \times 165.6}{20005 - 5 \times 62.6^2} = 0.2753$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 165.6 - 0.2753 \times 62.6 = 148.366$$

→ 線性迴歸方程式為 y = 148.366 + 0.2753 x

案例2

假設下列資料為某公司近五年的投資金額:

年度(x)	1	2	3	4	5
投資金額(y)	1	1	3	4	6

- (1)試求迴歸方程式?
- (2)請預測此公司第7年度的投資金額大約是多少?

案例2解說

先求斜率,根據五組數據,可得:

年度(x)	1	2	3	4	5	$\bar{x} =$	3
投資金額(y)	1	1	3	4	6	$\bar{y} =$	3
$x_i y_i$	1	2	9	16	30	Sum=	58
x_i^2	1	4	9	16	25	Sum=	55

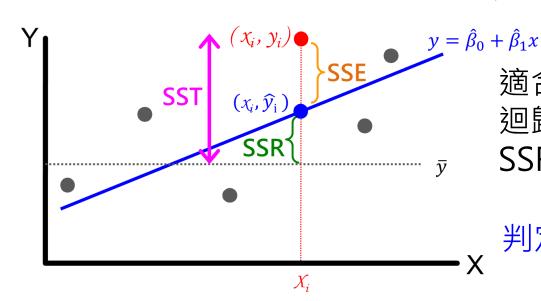
(1)
$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{58 - 5 \times 3 \times 3}{55 - 5 \times 3^2} = 1.3$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 3 - 1.3 \times 3 = -0.9$$

- → 線性迴歸方程式為 y = -0.9 + 1.3 x
- (2) 當 x=7時(第7年),預測的投資金額為: $y = -0.9 + 1.3 x = -0.9 + 1.3 \times 7 = 8.2$ (千元)

迴歸模型之 配適度檢定1

衡量迴歸方程式的解釋能力(判定係數) 也客觀檢定其適合度(F檢定)

判定係數 R²



適合度:希望觀測的值都落在 迴歸線上。所以SSE越小越好; SSR越大越好。

判定係數
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\hat{\beta}_{1}^{2} \sum (\hat{x}_{i} - \bar{x})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\hat{\beta}_{1}^{2} \left(\sum x_{i}^{2} - n\bar{x}^{2}\right)}{\sum y_{i}^{2} - n\bar{y}^{2}}$$

$$= \hat{\beta}_1^2 \frac{S_x^2}{S_y^2} = \frac{S_{\hat{y}}^2}{S_y^2}$$

R²越大,表示迴歸模型的解釋能力越強,配適度越大

迴歸模型的F檢定

迴歸模型的檢定,可以利用F檢定來做:

 $\begin{cases} H_0: \beta_1 = 0 \text{ (迴歸方程式不具有解釋力) (或x不可解釋y)} \\ H_1: \beta_1 \neq 0 \text{ (迴歸方程式具有解釋力)} \end{cases}$

變異來源	平方和	自由度	平均平方和	F值
迴歸	SSR	1	MSR=SSR/1	
隨機	SSE	n-2	MSE=SSE/(n-2)	$F^* = \frac{MSR}{MSE}$
總和	SST	n-1		1102

決策法則:

$$F^* > F_{\alpha, 1, n-2}$$
,則拒絕 H_0

$$F^* = \frac{MSR}{MSE} = \frac{\frac{R^2}{1}}{(1 - R^2)/(n - 2)}$$

案例3

某飲料公司欲知各商店所裝設的自動販賣機數 X 與每個月所販賣的罐裝飲料數 Y 間的關係,隨機選取8家商店,其資料如下:

販賣機數(x)	1	1	1	2	4	4	5	6
飲料罐數(y)	568	577	652	657	755	759	840	832

- (1)試求迴歸方程式?
- (2)在顯著水準0.05下,請檢定此迴歸線是否適合(是否具有代表性)?

「應用統計學 二版」p400,李德治、童惠玲,博碩文化

案例3 解說(a)

先求斜率,根據8組數據,可得:

販賣機數(x)	1	1	1	2	4	4	5	6	$\bar{x} = 3$
飲料罐數(y)	568	577	652	657	755	759	840	832	$\bar{y} = 705$
$x_i y_i$	568	577	652	1314	3020	3036	4200	4992	Sum= 18359
x_i^2	1	1	1	4	16	16	25	36	Sum= 100
y_j^2	322624	332929	425104	431649	570025	576081	705600	692224	Sum= 4056236

(1)
$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{18359 - 8 \times 3 \times 705}{100 - 8 \times 3^2} = 51.393$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 705 - 51.393 \times 3 = 550.82$$

→ 線性迴歸方程式為 y = 550.82 + 51.393 x

案例3 解說(b)

(2) 建立假設檢定: $\begin{cases} H_0: \beta_1 = 0 \text{ (迴歸方程式不具有解釋力)} \\ H_1: \beta_1 \neq 0 \text{ (迴歸方程式具有解釋力)} \end{cases}$

$$SST = \sum y_i^2 - n\bar{y}^2 = 4056236 - 8 \times 705^2 = 80036$$

$$SSR = \hat{\beta}_1^2 \left[\sum x_i^2 - n\bar{x}^2 \right] = 51.393^2 (100 - 5 \times 3^2) = 73954$$

SSE = SST - SSR = 6082

變異來源	平方和	自由度	平均平方和	F值
迴歸	73954	1	MSR=SSR/1=73954	⊏* _ MSR
隨機	6082	6	MSE=SSE/(n-2)=1014	$F^* = \frac{MSR}{MSE}$
總和	80036	7		$=\frac{73954}{1014}=72.96$

因為 $F^*=72.96 > F_{0.05, 1, 6} = 5.99$,所以拒絕 H_0 ,表示此迴歸線適合, X 對 Y 具有解釋力。

迴歸模型之 配適度檢定2

檢定斜率與截距的適合度

斜率項 β_1 的檢定

雙尾檢定

 $\begin{cases}
 H_0: \beta_1 = 0 (迴歸方程式不具有解釋力) \\
 H_1: \beta_1 \neq 0 (迴歸方程式具有解釋力)
 \end{cases}$

已知
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)$$
 ,因母體變異數 σ^2 未知,依照

假設檢定方法,可用 t分配做檢定:

$$t^* = \frac{\hat{\beta}_1 - \beta_1}{S_{\widehat{\beta}_1}} = \frac{\hat{\beta}_1}{\sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}}$$

決策法則: $|t^*| > t_{\alpha/2, n-2}$ 時,則拒絕虛無假設 H_0 ; 表示迴歸方程式具適配度,或自變數X可以解釋變數Y

斜率項 β_1 的信賴區間

也因為
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)$$
 ,且母體變異數 σ^2 未知,可用

t分配做區間估計(信賴水準1- α):

$$t^* = \frac{\hat{\beta}_1 - \beta_1}{S_{\widehat{\beta}_1}} = \frac{\hat{\beta}_1}{\sqrt{\frac{MSE}{\sum (x_i - \bar{x})^2}}} \qquad \text{以t分配做區間估計,所以} \\ 1-\alpha的信賴區間為:}$$

$$\hat{\beta}_1 - t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}} \leq \beta_1 \leq \hat{\beta}_1 + t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}$$

斜率項 β_1 的檢定

右尾檢定

 $\begin{cases} H_0: \beta_1 \leq 0 \ (自變數對依變數不具正向影響力) \\ H_1: \beta_1 > 0 \ (自變數對依變數具正向影響力) \end{cases}$

已知
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)$$
 ,母體變異數 σ^2 未知,依照假設

檢定方法,可用 t分配做檢定:

$$t^* = \frac{\hat{\beta}_1 - \beta_1}{S_{\widehat{\beta}_1}} = \frac{\hat{\beta}_1}{\sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}}$$

決策法則: $t^* > t_{\alpha, n-2}$ 時,則拒絕虛無假設 H_0 ;表示 迴歸方程式具適配度,或自變數X可以解釋變數Y

斜率項 β_1 的檢定

左尾檢定

 $\begin{cases} H_0: \beta_1 \geq 0 \ (自變數對依變數不具負向影響力) \\ H_1: \beta_1 < 0 \ (自變數對依變數具負向影響力) \end{cases}$

已知
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)$$
 ,母體變異數 σ^2 未知,依照假設

檢定方法,可用 t分配做檢定:

$$t^* = \frac{\hat{\beta}_1 - \beta_1}{S_{\widehat{\beta}_1}} = \frac{\hat{\beta}_1}{\sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}}$$

決策法則: $t^* < -t_{\alpha, n-2}$ 時,則拒絕虛無假設 H_0 ; 表 示自變數X對依變數Y有顯著的負面影響。

截距項 β_0 的檢定

雙尾檢定

 $\begin{cases}
 H_0: \beta_0 = 0 \text{ (迴歸方程式沒有通過原點)} \\
 H_1: \beta_0 \neq 0 \text{ (迴歸方程式沒有通過原點)}
 \end{cases}$

已知
$$\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sum x_i^2}{n\sum(x_i - \bar{x})^2}\sigma^2\right)$$
 ,母體變異數 σ^2 未知,依

照假設檢定方法,可用 t分配做檢定:

$$t^* = \frac{\hat{\beta}_0 - \beta_0}{S_{\widehat{\beta}_0}} = \frac{\hat{\beta}_0}{\sqrt{\frac{\sum x_i^2}{n} \times \frac{MSE}{\sum (x_i - \bar{x})^2}}}$$

決策法則: $|t^*| > t_{\alpha/2, n-2}$ 時,則拒絕虛無假設 H_0 ; 表示迴歸方程式沒有通過原點。

斜率項 β_0 的信賴區間

也因為
$$\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sum x_i^2}{n\sum(x_i-\bar{x})^2}\sigma^2\right)$$
,母體變異數 σ^2 未知,可用

t分配做區間估計(信賴水準1- α):

$$\mathbf{t}^* = \frac{\hat{\beta}_0 - \beta_0}{\mathbf{S}_{\widehat{\beta}_0}} = \frac{\hat{\beta}_0}{\sqrt{\frac{\sum x_i^2}{n} \times \frac{MSE}{\sum (x_i - \bar{x})^2}}} \quad \text{以t分配做區間估計,所以} \\ \mathbf{1} - \alpha 的信賴區間為:$$

$$\hat{\beta}_{0} - t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{\sum x_{i}^{2}}{n} \times \frac{MSE}{\sum (x_{i} - \bar{x})^{2}}} \leq \beta_{0} \leq \hat{\beta}_{0} + t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{\sum x_{i}^{2}}{n} \times \frac{MSE}{\sum (x_{i} - \bar{x})^{2}}}$$

案例4

某飲料公司想瞭解廣告費用(x)與飲料的銷售量(y)之間的關係,於是進行實驗,每個月打一次廣告,總共進行十個月的實驗,並記錄每個月的飲料銷售量,經過整理資料如下(n=10):

$$\sum x_i = 28 , \qquad \sum x_i^2 = 303.4 ,$$

$$\sum y_i = 75 , \qquad \sum y_i^2 = 598.5 , \qquad \sum x_i y_i = 237$$

- (1)試求迴歸方程式。
- (2)試求判定係數。
- (3)在顯著水準0.05下,廣告的花費對飲料的銷售量成正向 影響?
- (4)試求 β_1 的95%信賴區間。

「應用統計學 二版 」p403,李德治、童惠玲,博碩文化

案例4 解說(a)

(1)
$$\bar{x} = \frac{\sum x}{n} = \frac{28}{10} = 2.8 \quad \bar{y} = \frac{\sum y}{n} = \frac{75}{10} = 7.5$$

$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{237 - 10 \times 2.8 \times 7.5}{303.4 - 10 \times 2.8^2} = 0.12$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 7.5 - 0.12 \times 2.8 = 7.164$$

→ 線性迴歸方程式為 y = 7.164 + 0.12 x

(2)判定係數
$$R^2 = \frac{\hat{\beta}_1^2(\sum x_i^2 - n\bar{x}^2)}{\sum y_i^2 - n\bar{y}^2} = \frac{0.12^2(303.4 - 10 \times 2.8^2)}{598.5 - 10 \times 7.5^2} = 0.3$$

案例4 解說(b)

(3) 依題意,相當檢定: $\begin{cases} H_0: \beta_1 \leq 0 \text{ (x對y不具正向影響力)} \\ H_1: \beta_1 > 0 \text{ (x對y具正向影響力)} \end{cases}$

$$SSE = \sum y_i^2 - \hat{\beta}_0^2 \sum y_i - \hat{\beta}_1^2 \sum x_i y_i$$

$$= 598.5 - 7.164 \times 7 - 0.12 \times 237 = 32.76$$

$$MSE = \frac{SSE}{n-2} = \frac{32.76}{10-2} = 4.095$$

因為 $t^*=0.984 < -t_{0.05,8} = 1.86$,接受虛無假設 H_0 ;表示廣告的花費對飲料的銷售量,無<u>足夠證據證明具正</u>向影響。

案例4 解說(c)

(4) $β_1$ 在顯著水準0.05下的信賴區間為:

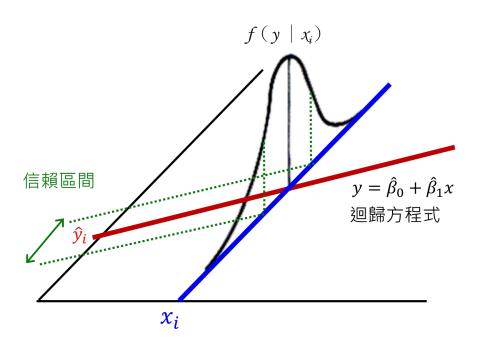
$$\hat{\beta}_1 - t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}} \leq \beta_1 \leq \hat{\beta}_1 + t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}$$

 \rightarrow 所以 $β_1$ 的信賴區間:

$$= 0.12 \pm 2.306 \times 0.1219 = [-0.161, 0.101]$$

迴歸模型之 信賴區間

全體依變數平均數的信賴區間

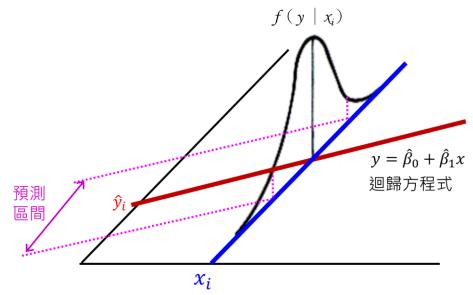


$$\hat{y}_i \sim N\left(E(y|x_i), \left[\frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_k (x_k - \bar{x})^2}\right]\sigma^2\right)$$

$$E(y|x_i) = \hat{y}_i \pm t_{\frac{\alpha}{2}, n-2} \sqrt{MSE\left[\frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_k (x_k - \bar{x})^2}\right]}$$

其中 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ · x_i 為所給定的自變數值

個別依變數的信賴區間(預測區間)



$$(y_i - \hat{y}_i) \sim N\left(0, \left[1 + \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_k (x_k - \bar{x})^2}\right]\sigma^2\right)$$

$$y_i = \hat{y}_i \pm t_{\frac{\alpha}{2}, n-2} \sqrt{MSE \left[1 + \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_k (x_k - \bar{x})^2} \right]}$$

其中 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ · x_i 為所給定的自變數值

案例5

某人想瞭解書本的定價是否受書的頁數所影響,於是他隨機選取10本書,記錄其頁數與定價如下表:

頁數(x)	390	700	760	500	560	600	440	500	360	280
定價(y)	280	480	650	320	380	500	200	200	230	130

- (1)試求迴歸方程式?
- (2)在顯著水準0.05下,是否書本的頁數越多其定價越高?
- (3)若某本書頁數是450頁,求同樣450頁的書籍平均定價的 95%信賴區間。
- (4)若此人欲購買一本新書,其頁數為450頁,求此本書定價的95%信賴區間。

「應用統計學 二版 」p408,李德治、童惠玲,博碩文化

案例5 解說(a)

頁數(x)	390	700	760	500	560	600	440	500	360	280	$\bar{x} =$	509
定價(y)	280	480	650	320	380	500	200	200	230	130	$\bar{y} =$	337
$x_i y_i$	109200	336000	494000	160000	212800	300000	88000	100000	82800	36400	Sum=	1919200
x_i^2	152100	490000	577600	250000	313600	360000	193600	250000	129600	78400	Sum=	2794900
y_j^2	78400	230400	422500	102400	144400	250000	40000	40000	52900	16900	Sum=	1377900

(1)
$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{1919200 - 10 \times 509 \times 337}{2794900 - 10 \times 509^2} = 0.9989$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 337 - 0.9989 \times 509 = -171.45$$

→ 線性迴歸方程式為 y = -171.45 + 0.9989 x

案例5 解說(b)

(2)依題意,相當檢定: $\begin{cases} H_0: \beta_1 \leq 0 \text{ (x對y不具正向影響力)} \\ H_1: \beta_1 > 0 \text{ (x對y具正向影響力)} \end{cases}$

$$SSE = \sum y_i^2 - \hat{\beta}_0^2 \sum y_i - \hat{\beta}_1^2 \sum x_i y_i$$

$$= 1377900 - (-171.45) \times 3370 - 0.9989 \times 1919200 = 38597.62$$

$$MSE = \frac{SSE}{n-2} = \frac{38597.62}{10-2} = 4824.702$$

因為 $t^*=6.497 > -t_{0.05,8} = 1.86$, 拒絕虛無假設 H_0 ; 表示有足夠證據顯示,書本的頁數越多,定價越高。

案例5 解說(c)

(3)依題意為求取迴歸方程式的信賴區間,已知 $x_0 = 450$,

$$\hat{y}_0 = -171.45 + 0.9989 \times 450 = 278.06$$

$$\Rightarrow E(y|x_0 = 450) = \hat{y}_0 \pm t_{\frac{\alpha}{2}, n-2} \sqrt{MSE\left[\frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum x_i^2 - n\bar{x}^2}\right]}$$

$$= 278.06 \pm t_{\frac{0.05}{2},8} \sqrt{4824.702 \left[\frac{1}{10} + \frac{(450 - 509)^2}{2794900 - 10 \times 509^2} \right]}$$

$$= 278.06 \pm 2.036 \times 23.765 = [229.674, 326.446]$$

案例5 解說(d)

(4)依題意為求取一本有450頁書的定價預測區間:

$$\Rightarrow (y|x_0 = 450) = \hat{y}_0 \pm t_{\frac{\alpha}{2}, n-2} \sqrt{MSE \left[1 + \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum x_i^2 - n\bar{x}^2} \right]}$$

$$= 278.06 \pm t_{\frac{0.05}{2},8} \sqrt{4824.702 \left[1 + \frac{1}{10} + \frac{(450 - 509)^2}{2794900 - 10 \times 509^2} \right]}$$

$$= 278.06 \pm 2.036 \times 73.413 = [128.59, 427.56]$$

相關分析(Correlation Analysis)

- ~迴歸模型之配適度檢定3
- ●衡量兩隨機變數相關程度與 變化的方向趨勢

相關分析(Correlation Analysis)

$$\rho_{xy} = \frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum (x_i - \mu_x)^2} \cdot \sqrt{\sum (y_i - \mu_y)^2}} = \frac{Cov(x, y)}{\sigma_x \sigma_y} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

$$\sharp \psi \cdot -1 \le \rho_{xy} \le 1$$

利用樣本資料來估算母體的相關係數:樣本相關係數

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \cdot \sqrt{\sum (y_i - \overline{y})^2}} = \frac{S_{xy}}{S_x S_y}$$

相關係數與判定係數間的關係

$$\Rightarrow r_{xy} = \hat{\beta}_1 \cdot \frac{S_x}{S_y}$$
 $\Rightarrow r_{xy} = \pm \sqrt{R^2}$ 其正負號與斜率項 $\hat{\beta}_1$ 相同

ρ_{xy} 的統計推論

同樣地,我們利用樣本統計量 r_{xv} 來估算母體相關係數 ρ_{xv} , 也可以用來檢定兩變數母體間所抽取的樣本是否有顯著代 表件。

假設檢定
$$\begin{cases} H_0: \rho_{xy} = 0 \\ H_1: \rho_{xy} \neq 0 \end{cases}$$

檢定統計量
$$t^* = \frac{r_{xy}}{\sqrt{\frac{1 - r_{xy}^2}{n - 2}}}$$

可利用斜率檢定推導而得

$$t^* = \frac{\hat{\beta}_1}{\sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}}}$$

決策法則

當
$$|\mathbf{t}^*| > \mathbf{t}_{\frac{\alpha}{2},\mathbf{n}-2}$$
 時,拒絕虛無假設 \mathbf{H}_0 。

相同概念,也可以進行「右尾檢定」或「左尾檢定」。

案例6

某人想瞭解工作年資(x)與薪水(y)是否有關,隨機選取10個人分別記錄其年資與薪水,其資料如下:

年資(x)	8	6.2	7.1	7.55	8.75	8.15	10.25	9.6	11.3	7.7
薪資(y)	18	33	48	50	54	56	62	65	71	83

- (1)試求迴歸方程式?
- (2)求x、y的相關係數,並檢定在顯著水準0.05下,x、y是 否具相關性?

「應用統計學 二版」p412,李德治、童惠玲,博碩文化

案例6 解說(a)

年資(x)	8	6.2	7.1	7.55	8.75	8.15	10.25	9.6	11.3	7.7	$\bar{x} =$	8.46
薪資(y)	18	33	48	50	54	56	62	65	71	83	$\bar{y} =$	54
x_iy_i	144	204.6	340.8	377.5	472.5	456.4	635.5	624	802.3	639.1	Sum=	4696.7
x_i^2	64	38.44	50.41	57.0025	76.5625	66.4225	105.0625	92.16	127.69	59.29	Sum=	737.04
y_j^2	324	1089	2304	2500	2916	3136	3844	4225	5041	6889	Sum=	32268

(1)
$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{4696.7 - 10 \times 8.46 \times 54}{737.07 - 10 \times 8.46^2} = 6.017$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 54 - 6.017 \times 8.46 = 3.096$$

→ 線性迴歸方程式為 y = 3.096 + 6.017 x

案例6 解說(b)

(2)依題意,相當檢定:
$$\begin{cases} H_0: \rho_{xy} = 0 \\ H_1: \rho_{xy} \neq 0 \end{cases}$$

$$r_{xy} = \hat{\beta}_1 \cdot \frac{S_x}{S_y} = 6.017 \times \frac{1.539}{18.583} = 0.498$$

因為 $t^*=1.624 < t_{0.025,8} = 2.306$,不拒絕虛無假設 H_0 ;表示無足夠證據顯示,年資與薪水具相關性。

→ 若以相關係數為0.498而言,應該要接受對立假設(兩者有關)才對,但檢定的結果卻相反,其原因在於樣本數不夠多。「檢定顯著」僅表示是統計上的顯著,不一定代表事實;欲求證事實,應該必須不斷地重複抽樣驗證或不斷地重複實驗,才可以更客觀驗證事實。

The End