Estimation ~ Interval Estimation ~

區間估計

Interval Estimation

區間估計

區間估計

所謂區間估計(Interval Estimation)是以樣本估計母體時,所產生的估計值為一個區間的形式。由於點估計可能無法準確推估母體參數,比較可行與客觀的方式就是利用抽樣出來的樣本,計算其統計量後,再給予一個可接受誤差範圍的區間,用於描述推估母體時,提供更多對於母體參數的正確、客觀訊息。

對稱型態

(點估計值-誤差)≤母體參數≤(點估計值+誤差)

非對稱型態

$$\frac{\text{點估計值}}{\text{係數1}} \le$$
 母體參數 $\le \frac{\text{點估計值}}{\text{係數2}}$

信賴水準

以樣本估計所形成的 "區間估計" ,主要是以母體參數在一個給定的「誤差」下所可能落點的區域。用以描述這個「誤差」的信心或可靠度,就是所謂的「信賴水準」($1-\alpha$),其中「 α 」稱為「顯著水準」(significance level)。

信賴水準(1-α):

從一個母體不斷地反覆抽取n個樣本,並利用此n個樣本形成之區間,平均約有(1-α)的機會會包含此母體的參數。

信賴區間(confidence interval, CI)

s.e.m.: standard error of the mean (樣本平均值的標準差)

圖片來源:http://www.nature.com/nmeth/journal/v10/n10/fig_tab/nmeth.2659_F2.html

會想瞭解哪些統計量的信賴區間議題?

求得母體平均數信賴區間的方法

「統計學 二版 」p13-9,李德治、林孟濡、童惠玲 著,博碩文化

Confidence Intervals for the Population Mean, µ

一個母體平均數的信賴區間

Confidence Interval Estimate

DCOVA

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observations from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - e.g. 95% confident, 99% confident
 - Can never be 100% confident

Confidence Interval Example

Cereal fill example

- Population has $\mu = 368$ and $\sigma = 15$.
- If you take a sample of size n = 25 you know
 - $-368 \pm 1.96 * 15 \sqrt{25} = (362.12, 373.88)$ contains 95% of the sample means
 - When you don't know μ , you use X to estimate μ
 - If X = 362.3 the interval is 362.3 \pm 1.96 * 15 $/\sqrt{25}$ = (356.42, 368.18)
 - Since 356.42 $\leq \mu \leq$ 368.18 the interval based on this sample makes a correct statement about μ .

But what about the intervals from other possible samples of size 25?

Confidence Interval Example

DCOV<u>A</u>

(continued)

Sample #	X	Lower Limit	Upper Limit	Contain µ?
1	362.30	356.42	368.18	Yes
2	369.50	363.62	375.38	Yes
3	360.00	354.12	365.88	No
4	362.12	356.24	368.00	Yes
5	373.88	368.00	379.76	Yes

Confidence Interval Example

DCOVA

(continued)

- In practice you only take one sample of size n
- In practice you do not know μ so you do not know if the interval actually contains μ
- However you do know that 95% of the intervals formed in this manner will contain μ
- Thus, based on the one sample, you actually selected you can be 95% confident your interval will contain μ (this is a 95% confidence interval)

Note: 95% confidence is based on the fact that we used Z = 1.96.

Estimation Process

General Formula

 The general formula for all confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Where:

- Point Estimate is the sample statistic estimating the population parameter of interest
- Critical Value is a table value based on the sampling distribution of the point estimate and the desired confidence level
- Standard Error is the standard deviation of the point estimate

Confidence Level

- Confidence Level
 - Confidence the interval will contain the unknown population parameter
 - A percentage (less than 100%)

Confidence Level, $(1-\alpha)$

(continued)

- Suppose confidence level = 95%
- Also written $(1 \alpha) = 0.95$, $(so \alpha = 0.05)$
- A relative frequency interpretation:
 - 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

Confidence Intervals

DCOVA

Confidence Interval for μ (σ Known)

DCOVA

請參閱

- Assumptions
 - Population standard deviation σ is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\frac{1}{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Sampling Distribution of the Mean $Z_{\bar{x}_n} = \frac{\bar{x}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} \rightarrow N(0.1)$

where \overline{X} is the point estimate

 $Z_{\alpha/2}$ is the normal distribution critical value for a probability of $\alpha/2$ in each tail of $\sqrt[]{n}$ is the standard error

Finding the Critical Value, $Z_{\alpha/2}$

DCOVA

Consider a 95% confidence interval:

 $Z_{\alpha/2} = \pm 1.96$

Common Levels of Confidence

DCOVA

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value	
80%	0.80	1.28	→ 練習:
90%	0.90	1.645	
95%	0.95	1.96	試著查表看
98%	0.98	2.33	可不可以得
99%	0.99	2.58	到相同結果?
99.8%	0.998	3.08	
99.9%	0.999	3.27	

Intervals and Level of Confidence

Copyright ©2014 Pearson Education

案例

某銀行想要知道顧客的一般定期存款金額,以 便業務拓展參考,於是隨機抽取49位客戶,得 知這49位客戶平均一般定期存款金額為30萬。 假設客戶一般定期存款金額為常態分配,變異 數為64,試求平均一般定期存款金額的90%信 賴區間?

「現代統計學」p147,吳柏林 著,五南圖書

案例解說

已知
$$\bar{x} = 30$$
 , $n=49$, $\sigma^2 = 64$ (σ 已知) ; 常態分配 \rightarrow 分配對稱 \rightarrow (1- α)=90% \rightarrow α /2=0.05;

所以信賴區間為:

$$\left(\bar{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \quad \bar{x} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right) \Rightarrow$$

$$\left(\bar{x} - 1.645 \frac{8}{\sqrt{49}}, \bar{x} + 1.645 \frac{8}{\sqrt{49}}\right)$$

$$\rightarrow$$
 (30 ± 1.9)

Confidence Intervals

DCOVA

Do You Ever Truly Know σ?

- Probably not!
- In virtually all real world business situations, σ is not known.
- If there is a situation where σ is known then μ is also known (since to calculate σ you need to know μ .)
- If you truly know μ there would be no need to gather a sample to estimate it.

Confidence Interval for μ (σ Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S
- This introduces extra uncertainty, since S is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

Assumptions

(continued)

- Population standard deviation is unknown
- DCOVA

- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution

青參閱

Confidence Interval Estimate:

$$\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

Student's t distribution

$$t = \frac{\bar{x}_n - \mu}{\sqrt{\frac{S^2}{n}}} \to t(n-1)$$

(where $t_{\alpha/2}$ is the critical value of the t distribution with n -1 degrees of freedom and an area of $\alpha/2$ in each tail)

Student's t Distribution

- The t is a family of distributions
- The $t_{\alpha/2}$ value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

$$d.f. = n - 1$$

Degrees of Freedom (df)

DCOVA

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given mean)

Student's t Distribution

DCOVA

Note: $t \rightarrow Z$ as n increases

Student' s t Table

Selected t distribution values

DCOVA

With comparison to the Z value

Confidence Level	t (10 d.f.)	t (20 d.f.)	t (30 d.f.)	Z (∞ d.f.)
0.80	1.372	1.325	1.310	1.28
0.90	1.812	1.725	1.697	1.645
0.95	2.228	2.086	2.042	1.96
0.99	3.169	2.845	2.750	2.58

Note: $t \rightarrow Z$ as n increases

案例

台北市政府教育局想要估計該市小學生,平均 每天收看電視所花費的時間。今隨機抽取26位 小學生,得知這26位學童平均每天收看80分鐘 的電視,樣本標準差為30分鐘?假設所調查的 項目符合常態分配,試求該市小學生每天花費 在看電視平均數 μ 的95%信賴區間?

「現代統計學」p148,吳柏林著,五南圖書

案例解說

已知 $\bar{x} = 80$, n=26 , σ^2 未知 , 但 s 可知為 30 ; 常態分配 , σ 未知 → 利用t分配 → 自由度df=25 $(1-\alpha)=95\%$ → $\alpha/2=0.025$;

所以信賴區間為:

$$\left(\overline{x} - t(n-1) \frac{s}{\sqrt{n}}, \quad \overline{x} + t(n-1) \frac{\sigma}{\sqrt{n}} \right)
\Rightarrow \left(\overline{x} - t_{0.025}(25) \frac{30}{\sqrt{26}}, \quad \overline{x} + t_{0.025}(25) \frac{30}{\sqrt{26}} \right)
\Rightarrow \left(80 - 2.06 \frac{30}{\sqrt{26}}, \quad 80 + 2.06 \frac{30}{\sqrt{26}} \right) \rightarrow (80 \pm 12)$$

Confidence Intervals for the Population Proportion, π

一個母體比例的信賴區間

對照

比例符號	母體	比例統計量
課本	π	р
老師習慣	p	\hat{p}

Confidence Intervals

DCOVA

Confidence Intervals for the Population Proportion, π

DCOVA

• An interval estimate for the population proportion (π) can be calculated by adding an allowance for uncertainty to the sample proportion (p)

對照

比例符號	母體	比例統計量
課本	π	р
老師習慣	р	\hat{p}

Confidence Intervals for the Population Proportion, π

(continued)

Recall that the distribution of the sample
 proportion is approximately normal if the sample
 size is large, with standard deviation

$$\sigma_{p} = \sqrt{\frac{\pi(1-\pi)}{n}}$$

We will estimate this with sample data:

$$\sqrt{\frac{p(1-p)}{n}}$$

Confidence Interval Endpoints

DCOVA

 Upper and lower confidence limits for the population proportion are calculated with the

formula

 $p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$

Sampling Distribution of the Proportion

$$Z = \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

請對照老師的比例符號

- where
 - $Z_{\alpha/2}$ is the standard normal value for the level of confidence desired
 - p is the sample proportion
 - n is the sample size
- Note: must have np > 5 and n(1-p) > 5

案例

衛生署想要調查全國大專院校學生抽煙人口比例,於是隨機收取100位大專生,發現有19位是抽煙人口,試求抽煙人口比例之95%信賴區間?

「現代統計學」p155, 吳柏林 著, 五南圖書

案例解說

請對照老師的比例符號

求「比例」 \rightarrow 想到 \hat{p} \rightarrow n=100,k=19; 調查為人口數、題目未特別交代 \rightarrow 利用常態分配解題 \rightarrow (1- α)=95% \rightarrow α /2=0.025;

所以信賴區間為:

$$\left(\hat{p} - Z_{\frac{\alpha}{2}}\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}, \quad \hat{p} + Z_{\frac{\alpha}{2}}\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}\right) \Rightarrow$$

$$\left(\frac{19}{100} - 1.96\sqrt{\frac{(0.19)(0.81)}{100}}, \quad \frac{19}{100} + 1.96\sqrt{\frac{(0.19)(0.81)}{100}}\right) \Rightarrow$$

 \rightarrow (0.19 ± 0.08)

Required Sample Size

符合信賴區間要求的樣本數

Sampling Error

• The required sample size can be found to reach a desired margin of error (e) with a specified level of confidence $(1 - \alpha)$

- The margin of error is also called sampling error
 - the amount of imprecision in the estimate of the population parameter
 - the amount added and subtracted to the point estimate to form the confidence interval

$$e = Z_{\alpha/2} \xrightarrow{\sigma} \xrightarrow{\text{Now solve}} \xrightarrow{\text{for n to get}}$$

$$n = \frac{Z_{\alpha/2}^2 \sigma^2}{e^2}$$

 To determine the required sample size for the mean, you must know:

- The desired level of confidence (1 α), which determines the critical value, $Z_{\alpha/2}$
- The acceptable sampling error, e
- The standard deviation, σ

Required Sample Size Example

If σ = 45, what sample size is needed to estimate the mean within \pm 5 with 90% confidence?

$$n = \frac{Z^2 \sigma^2}{e^2} = \frac{(1.645)^2 (45)^2}{5^2} = 219.19$$

So the required sample size is n = 220

(Always round up)

If σ is unknown

- If unknown, σ can be estimated when using the required sample size formula
 - Use a value for σ that is expected to be at least as large as the true σ
 - Select a pilot sample and estimate σ with the sample standard deviation, S

(continued)

Determining Sample Size

For the Proportion

$$e = Z\sqrt{\frac{\pi(1-\pi)}{n}} \longrightarrow \text{Now solve for n to get} \longrightarrow n = \frac{Z_{\alpha/2}^2 \pi (1-\pi)}{e^2}$$

(continued)

- To determine the required sample size for the proportion, you must know:
 - The desired level of confidence (1 α), which determines the critical value, $Z_{\alpha/2}$
 - The acceptable sampling error, e
 - The true proportion of events of interest, π
 - π can be estimated with a pilot sample if necessary (or conservatively use 0.5 as an estimate of π)

Required Sample Size Example

How large a sample would be necessary to estimate the true proportion defective in a large population within $\pm 3\%$, with 95% confidence?

(Assume a pilot sample yields p = 0.12)

Required Sample Size Example

(continued)

Solution:

For 95% confidence, use $Z_{\alpha/2} = 1.96$

$$e = 0.03$$

p = 0.12, so use this to estimate π

$$n = \frac{Z_{\alpha/2}^2 \pi (1-\pi)}{e^2} = \frac{(1.96)^2 (0.12)(1-0.12)}{(0.03)^2} = 450.74$$

So use n = 451

案例1

已知某大學有8000位學生,根據過去的一項調查,發生這些學生每月平均零用錢為8200元,標準差為1200元。現欲進行抽樣調查,要求誤差在95%的信賴水準下,不超過 ± 5%的時候,至少應抽選多少樣本數?

「應用統計學 二版」p237,李德治、童惠玲 著,博碩文化

案例2

某校依照過去經驗知,大約有10%的學生反對學費上漲,現欲抽樣以確認反對學費上漲的比例,試問希望誤差在5%以內的機率為0.99時,至少應抽取幾個樣本?

「應用統計學 二版」p241,李德治、童惠玲 著,博碩文化

The End

案例1:至少取樣33個

案例2:至少取樣238個